
XtremeJ 2024, 04.11.2024, Birgit Kratz

By the bye: JNI

JNI vs FFM - a (subjective) comparison

Birgit Kratz

•Freelancing IT Consultant, SpringBoot Trainer

•Java-Backend

•More than 25 years experience

•Co-Organizer of Softwerkskammer in Düsseldorf and Köln
(Cologne)

•Co-Organizer of SoCraTes-Conf Germany

•Email: mail@birgitkratz.de

•Mastodon: @birgitkratz@jvm.social

•Github: https://github.com/bkratz

•Web: https://www.birgitkratz.de

About me

mailto:mail@birgitkratz.de
https://github.com/bkratz
https://www.birgitkratz.de

Agenda

A little background story

The old days - JNI in a nutshell

The new days - what is the new FFM API and how does it work?

Comparison by example - the sudoku solver project

(subjective) Assessment

My background story

Two Problems
•How to allocate and manage off-heap Memory (aka Foreign

Memory)

•How to call function in a Native Library (aka Foreign Functions)

Foreign Memory (the old way)
• by using direct ByteBuffers (ByteBuffer.allocateDirect(int capacity))

• restricted to max 2GB

• only deallocated when object is garbage collected (not developer

controlled)

• by using sun.misc.Unsafe API

• which is fast and allows huge off-heap regions

• gives developers too much control over (deallocation, dangling

pointers, etc.)

Foreign Functions (the old way)

• by using JNI

• even the JVM uses JNI for access platform specific functionalities

• allows classes to declare ‘native’ methods

• interact with code written in other programming languages like C or C++

• implemented in a separate native shared library

• bridge between the bytecode running in our JVM and the native code

• part of Java since Java 1.1

JNI (Java Native Interface) in a
Nutshell

• java.lang.System: ie.e arraycopy(), currentTimeMillis()

• java.io.FileDescriptor

• java.nio.DirectByteBuffer

• java.lang.Thread: i.e. start(), sleep()

• java.util.zip.Deflater, java.util.zip.Inflater

• and others…

Java Classes containing native Methods

• Off-CPU computing (Cuda, OpenCL)

• Deep learning (Blas, cuBlas, cuDNN, Tensorflow, …)

• Graphic processing (OpenGL, Vulkan, DirectX)

• others (OpenSSL, SQLLite, V8, …)

Sometimes you just have to go ‘native’

Quelle: https://www.youtube.com/watch?v=cfxBrYud9KM

https://www.youtube.com/watch?v=cfxBrYud9KM

Java Client JNI Native Library

Native Method

Java Client JNI Native Library

Native Method

C/C++ Header

Generated with “javac -h”

Java Client JNI Native Library

Native Method

C/C++ Header C/C++ Implementation
implements

Java Client JNI Native Library

Generated with “javac -h”

Native Method

C/C++ Header C/C++ Implementation

Native Library

Generated with “javac -h”

implements

calls

Java Client JNI Native Library

Native Method

C/C++ Header C/C++ Implementation

Native Library

Generated with “javac -h”

implements

calls

Java Client JNI Native Library

System.loadLibrary(<C/C++ Library>)

Native Method

C/C++ Header C/C++ Implementation

Native Library

Generated with “javac -h”

implements

calls

Java Client JNI Native Library

System.loadLibrary(<C/C++ Library>)

Problems
• Need to have good knowledge of native language such as C/C++

(as a Java programmer)

• Need to know memory management in these languages

• Potential memory leaks -> allocated memory is never freed

• Memory freed too early -> use-after-free

Code example

FFM API - Java Foreign Function
& Memory API

• JEP 454

•Part of Project Panama

•Final since Java 22

Managing Memory in Java
(the new way)

•Arena

• models the lifecycle of Memory Segments

• it’s closable

• deterministic deallocation of Memory Segments

• no out-of-bounds access

• no use-after-free access

Arena Characteristics

Quelle: https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/foreign/Arena.html

Kind Bounded lifetime Explicitly closeable Accessible from multiple threads

Global No No Yes

Automatic Yes No Yes

Confined Yes Yes No

Shared Yes Yes Yes

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/foreign/Arena.html

Managing Memory in Java
(the new way)

•Memory Segment

• can represent on-heap or off-heap memory regions

• off-heap Memory Segments belongs to an Arena

• all Memory Segments of an Arena share the same lifetime

• cannot be used after being freed

• when an Arena is closed, all of it’s Memory Segments are
automatically invalidated

Managing Memory in Java
(the new way)

• Memory Layout

• programmatically describe contents of a memory region

• can be queried for size, alignment and access expressions

• has subtypes like:

• Group Layout (i.e. for describing structs)

• Sequence Layout (i.e. for lists)

• Value Layout (i.e. for pointers, boolean, byte, char, int, long, etc.)

• VarHandle - to simplify offset handling

Arena

Memory Segment

Memory Segment

arena.allocateFrom(String)
arena.allocateFrom(ValueLayout, value)

…

Memory Layout
Segment Allocator

VarHandle
Set/Get

Direct Native Function call with
Foreign Function API

Java Client
Foreign
Function

API
Native Library

Java Client
Foreign
Function

API
Native Library

System.loadLibrary(<Native Library>)

Java Code only

Java Client
Foreign
Function

API
Native Library

System.loadLibrary(<Native Library>)

SymbolLookup
(to find the native Method to call)

Native Library

Java Code only

Java Client
Foreign
Function

API
Native Library

System.loadLibrary(<Native Library>)

SymbolLookup
(to find the native Method to call)

Linker - downcallHandle
(to get a MethodHandle)

Native Library

Java Code only

Java Client
Foreign
Function

API
Native Library

System.loadLibrary(<Native Library>)

SymbolLookup
(to find the native Method to call)

Linker - downcallHandle
(to get a MethodHandle)

Arena
Memory Segments

Native Library

Java Code only

Java Client
Foreign
Function

API
Native Library

System.loadLibrary(<Native Library>)

SymbolLookup
(to find the native Method to call)

Linker - downcallHandle
(to get a MethodHandle)

Arena
Memory Segments

Native Library

invoke downcallHandle

Code example

jextract

Quelle: https://github.com/openjdk/jextract

• is a tool which mechanically generates Java bindings from a native
library headers

• leverages the clang C API in order to parse the headers associated
with a given native library, and the generated Java bindings build upon
the Foreign Function & Memory API

• was originally developed in the context or Project Panama

https://github.com/openjdk/jextract

Code example

•Both approaches are not platform independent, the native library has to be
available for each platform the Java program is running on

• FFM is only available with Java 22 or later, or as a preview-version also with
version prior to Java 22

•With FFM I can completely stay in the Java development environment

•No definition of ‘native’ methods necessary

•Significantly less code compared to JNI, especially when using ‘jextract’

•The programming with MemorySegments and Arenas needs some getting
used to

•Do not need to worry about memory-leaks or use-after-freed anymore

My subjective Assessment

Some more inspiration
• 1BR - The One Billion Row Challenge, by Gunnar Morling

• reading and processing a REEEAAALLLYYY big file with Java as quick
as possible

• https://www.morling.dev/blog/one-billion-row-challenge/

• Github Repository: https://github.com/gunnarmorling/1brc

• Example solution using Arena and MemorySegment: https://
github.com/gunnarmorling/1brc/blob/main/src/main/java/dev/morling/
onebrc/CalculateAverage_artsiomkorzun.java

https://www.morling.dev/blog/one-billion-row-challenge/
https://github.com/gunnarmorling/1brc
https://github.com/gunnarmorling/1brc/blob/main/src/main/java/dev/morling/onebrc/CalculateAverage_artsiomkorzun.java
https://github.com/gunnarmorling/1brc/blob/main/src/main/java/dev/morling/onebrc/CalculateAverage_artsiomkorzun.java
https://github.com/gunnarmorling/1brc/blob/main/src/main/java/dev/morling/onebrc/CalculateAverage_artsiomkorzun.java

Questions?

Thank you
Slides: https://www.birgitkratz.de/uploads/XtremeJ_2024_ByTheByeJNI.pdf

Sample code repositories: 
https://github.com/bkratz/SudokuSolverNative 
https://github.com/bkratz/SudokuSolverCPP 
https://github.com/bkratz/SudokuSolverJNI 
https://github.com/bkratz/SudokuSolverFFM

•Email: mail@birgitkratz.de

•Mastodon: @birgitkratz@jvm.social

•Github: https://github.com/bkratz

•Web: https://www.birgitkratz.de

https://www.birgitkratz.de/uploads/XtremeJ_2024_ByTheByeJNI.pdf
https://github.com/bkratz/SudokuSolverNative
https://github.com/bkratz/SudokuSolverCPP
https://github.com/bkratz/SudokuSolverJNI
https://github.com/bkratz/SudokuSolverFFM
mailto:birgitkratz@jvm.social
https://github.com/bkratz
https://www.birgitkratz.de

