
OOP München 2024, 30.01.2024, Birgit Kratz

All Tests green? Oh no!!!
Why it is sometimes good, when a test fails.

Birgit Kratz

•Freelancing IT Consultant

•Java-Backend

•More than 25 years experience

•Co-Organizer of Softwerkskammer in Düsseldorf and Köln
(Cologne)

•Co-Organizer of SoCraTes-Conf Germany

•Email: mail@birgitkratz.de

•Mastodon: @birgitkratz@jvm.social

•Github: https://github.com/bkratz

•Web: https://www.birgitkratz.de

About me

mailto:mail@birgitkratz.de
https://github.com/bkratz
https://www.birgitkratz.de

Agenda

What is Mutation Testing and how does it work

What kind of problems can be solved with it

Disadvantages

Tipps

First some questions

Even with 100% code
coverage…

… can you tell how good and
reliable your tests are?

Goodhart’s Law

When a measure becomes a target, it
ceases to be a good measure.

How to assess the quality of a
test suite?

Possible Answers

✓we do TDD

✓we do code reviews

✓we have a Quality department

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”

― Edsger W. Dijkstra in “Notes On Structured Programming”

1971: Richard Lipton
Paper: “Fault diagnosis of computer programs”

If you want to know, whether your test suite properly
checks your code, introduce a bug and then see if the test
suite can find the bug.

Mutation Testing

How it works

Tested Code Base

How it works

Tested Code Base

How it works

MutantCode changeTested Code Base

How it works

Run testsMutantCode changeTested Code Base

How it works

Mutant killed
(at least one
failing test)

Run testsMutantCode changeTested Code Base

How it works

Mutant survived
(all tests still

green)

Mutant killed
(at least one
failing test)

Run testsMutantCode changeTested Code Base

How it works

Mutant survived
(all tests still

green)

Mutant killed
(at least one
failing test)

Run testsMutantCode changeTested Code Base

How it works

Refactor and Repeat

Which kind of Mutants are
we talking about?

Conditional Boundary
Mutator

Original Mutant
< <=

<= <
> >=

>= >

Negate Conditionals
Mutator

Original Mutant
== !=
!= ==
> <=

>= <
<= >
< >=

Increment Mutator

Original Mutant
i++ i—
i— i++

Original Mutant
return -i return i

Invert Negatives Mutator
inverts negation of integer and floating point numbers

Math Mutator
Original Mutant

+ -
* /
& |
>> <<
… …

Many More
Void Method Call Mutator - removes calls to void methods

Empty Returns Mutator - replaces return values with an ‘empty’ value

False Returns Mutator - always returns false for a primitive boolean return value

True Returns Mutator - always returns true for a primitive boolean return value

Null Returns Mutator - replaces return values with null

Primitive Returns Mutator - replaces int, short, long, char, float and double return values with 0

Constructor Call Mutator - replaces constructor calls with null values

still more…

What kind of problems can
be detected / can it help you

with?

Detect poorly chosen or
missing test data

Detect Ambiguities in code
base or Logical errors

Detect missing test cases

Highlighting redundant code
and code smells

Finding buggy test cases

Provide a safety net when
refactoring your tests

What kind of problems can
not be solved?

Equivalent Mutation
The mutants in this set cannot be killed because they are equivalent to
the original program. No possible test input exists that can distinguish
their behaviour from that of the original program.

Original Mutant

DEMO
with Java and PIT

(https://pitest.org/)

https://github.com/hcoles/pitest

Disadvantages of Mutation
testing

• Can be very time consuming
• Cannot detect/avoid equivalent mutations, since the resulting
mutant behaves in exactly the same way as the original

• Not suitable for BlackBox Testing, i.e when focusing on frontend
tests or E2E tests.

Cost of Mutation Testing
Let’s assume we have:
• a code base with 300 Java classes
• 10 test cases for each class
• on average, each test case requires 0.2 seconds for its execution
• the total test suite execution costs 300 * 10 * 0,2 = 600 seconds (10 minutes)

Let’s assume we have, on average, 20 mutants per each class.
The total cost of mutation analysis is 300 * 10 * 0,2 * 20 = 12000 seconds (3h 20 min)

How to reduce this cost?

Run tests in parallel for speed

Do not produce Mutants for code
that is not covered by tests

Reduce number of used
Mutations

Reduce number of Classes to
apply Mutation Testing to

Incremental Analysis

Try it!
✓ Try it again
✓ Start small
✓ Use it as a TOOL to give you feedback as you work
✓Write more tests
✓ Get familiar with reported issues and how to solve them
✓ Configure it to your needs
✓ Start with critical components
✓ Don’t use all Mutators all the time

Mutation Test Tools
https://github.com/theofidry/awesome-mutation-testing

https://www.youtube.com/watch?v=LoFJajoJQ2g

Youtube Video with Henry Coles

https://github.com/theofidry/awesome-mutation-testing

Questions?

Thank you
Slides: https://www.birgitkratz.de/uploads/OOP_2024_MutationTesting.pdf

Sample code: https://github.com/bkratz/robobar

•Email: mail@birgitkratz.de

•Twitter: @bikratz

•Mastodon: @birgitkratz@jvm.social

•Github: https://github.com/bkratz

•Web: https://www.birgitkratz.de

http://OOP_2024_MutationTesting.pdf
https://github.com/bkratz/robobar
mailto:birgitkratz@jvm.social
https://github.com/bkratz
https://www.birgitkratz.de

